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Abstract— We compare the performance of list-type soft-decision Reed-
Solomon (RS) decoding algorithms to that of classical hard-decision RS de-
coding on Partial Response (PR) channels. The two soft-decision RS decoding
approaches that we consider, the List-GMD and the Koetter-Vardy algorithm,
are both based on Sudan’s (polynomial) interpolation approach to polynomial-
time list-decoding. The soft-decision RS decoders take as input symbol-based
reliabilities which can be provided by a symbol-based BCJR algorithm. The
symbol-based BCJR algorithm is an extension of the original BCJR algorithm
and calculates the a posteriori probability (APP) of a block of l-bits. The com-
plexity of the algorithm can be reduced when applied to a PR channel. We
present a hybrid Viterbi-BCJR approach that can be used when only the reli-
ability of the most-likely symbol is desired. The hybrid approach calculates
the APP of the most reliable symbol without the need to run the complete
forward and backward algorithm. We demonstrate through simulations that
soft-decision RS decoding will lead to a lower probability of decoding error.
Moreover, we show that using the symbol-based APPs will yield a lower sym-
bol error rate (SER) than using the measures obtained by multiplying the bit
reliabilities.

I. INTRODUCTION
We consider a discrete memoryless source that is transmitted

over a channel affected by intersymbol interference (ISI) and ad-
ditive white Gaussian noise (AWGN.) A specific scenario is the
magnetic recording channel. To combat ISI in this channel, we
typically use an equalizer to modify the channel read-back signal
into a pre-determined partial response (PR) target [1, Chapter 9].
The equalized magnetic recording channel is also known as a PR
channel and specified by a PR polynomial. For maximum like-
lihood detection, we can use the Viterbi algorithm applied to the
trellis corresponding to the PR polynomial.

In a magnetic recording system, we often employ a concatenated
coding scheme where the “inner code” is the PR channel and the
outer code is an algebraic block code. Partial Response Maxi-
mum Likelihood (PRML) is a detection technique used to select
the most-likely bit-sequence out of the inner channel and an alge-
braic outer code such as the Reed-Solomon (RS) code is used for
the residual errors.

The classical bounded-distance RS decoder correctly decodes to
a unique codeword if the number of errors t is less than half the
minimum distance d. To exceed the classical decoding radius t,
“list-decoding” was introduced independently by Elias and Wozen-
craft [2], [3]. List-decoding is a technique that, for a given received
vector v, efficiently generates a list of codewords within a Ham-
ming distance τ from v, where τ is greater than or equal to t. Su-
dan [4] and Guruswami [5] were the first to develop an approach
that solves the list-decoding problem in polynomial time. Their
approach to list-decoding consists of polynomial interpolation and
factorization. In Section II, we present the List-GMD algorithm
which combines Sudan and Guruswami’s list-decoding with For-
ney’s [6] Generalized Minimum Distance (GMD) decoding into
a sequential erasure list-decoding attempt at soft-decision Reed-
Solomon decoding. Koetter and Vardy [7] have also developed a
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soft-decision algebraic decoding algorithm for RS codes based on
Sudan and Guruswami’s polynomial interpolation. Both the List-
GMD and the Koetter-Vardy algorithm take as inputs symbol-wise
reliability information (or APPs) from the inner PR channel. One
way to approximate the symbol-wise APPs is to apply the origi-
nal BCJR algorithm [8] to the inner channel and multiply the bit
APPs that form a symbol. However, in using the bit-product ap-
proach, we may include invalid trellis paths in the calculation. In
general, to get reliabilities for l-bit symbols we are interested in

Pr
(
uk

k−(l−1) = ϕ | RN
1

)
, ∀ϕ ∈ {0, 1}l

, and for all k = il, i =

1, 2, · · · . This could be done by first calculating Pr
(
uN

1 | RN
1

)

and then obtaining the l-dimensional marginals. It is, however,
infeasible to compute the conditional distribution Pr

(
uN

1 | RN
1

)

because the number of points in the probability distribution is ex-
ponential in N . The symbol-based BCJR, much like the bit-based
BCJR, uses the Markov properties of the source to get around the
exponential complexity of calculating the l-dimensional marginals.
Note that we cannot compute the l-dimensional marginals from
the product of the single-bit marginals and, therefore, we cannot
multiply the bit APPs to calculate the symbol APPs. To correctly
calculate the l-dimensional marginals and, thus the symbol-wise
APPs, we discuss a symbol-based BCJR algorithm in Section III.
Our method uses the conventional bit-based trellis as in [8] and
only modifies the manner in which the probability functions are
updated when compared to the original BCJR algorithm. Hoeher
[9] was the first to develop a method of calculating the a posteri-
ori probability of a block of l consecutive bits. We however pro-
vide a description and derivation that is aimed at applications in
the magnetic recording channel. We show that simplifications of
the algorithm can be made for the case of binary-input ISI chan-
nels. We also extend Hoeher’s work by introducing a reduced-
complexity hybrid Viterbi-BCJR algorithm that calculates the reli-
ability of the most-likely symbol. In Section IV, we provide sim-
ulation results that demonstrate the performance improvement of
soft-decision RS decoding over hard-decision decoding and the re-
duction in SER that arises from using the APPs calculated by the
symbol-based BCJR algorithm. In Section V we conclude with
observations and remarks.

II. SOFT-DECISION REED-SOLOMON DECODING

A. GMD decoding
Decoding using soft information improves performance. For-

ney’s Generalized Minimum Distance (GMD) decoding [6, Chap-
ter 3] was an early attempt at using soft channel information in the
decision process. GMD decoding takes as inputs the quantized re-
ceived vector v = {v1, · · · , vn} and its associated reliability vector
r = {r1, · · · , rn}, where 0 ≤ ri ≤ 1, i = 1, · · · , n. The algorithm
performs a series of erasures-and-errors hard-decision decoding on
v by erasing the s least reliable symbols according to r. If a code-
word satisfies the GMD criterion [6, Eq. 3.41], it will be the unique
codeword that does so and be found by the algorithm.



B. List-GMD decoding
List-GMD decoding is a combination of Sudan’s list-decoding

and Forney’s GMD decoding. The algorithm takes as inputs a re-
ceived vector v and its associated reliability vector r which can be
calculated by, for example, the hybrid Viterbi-BCJR algorithm to
be discussed in Section III. Sort the reliabilities in order of increas-
ing magnitude, that is, ri1 ≤ · · · ≤ rin

. Define the indicator vector
as qs = {qs (r1) , · · · , qs (rn)}, where 0 ≤ s ≤ n and

qs

(
rij

)
=

{
0,
1,

1 ≤ j ≤ s
s + 1 ≤ j ≤ n

(1)

The List-GMD algorithm is as follows:
1) For s = 0, · · · , d − 1 do

a) for each zero position in qs, erase the corresponding
symbol in v. Denote this vector with s erased symbols
vs.

b) perform erasures-and-errors list-decoding on vs thus
generating a list of candidate codewords for each de-
coding trial.

2) Select the most likely codeword from the union of the lists
output by the decoding trials.

For an (n, k, d) Reed-Solomon code with s erasures, the error cor-
rection bound of Sudan’s erasures-and-errors decoding is given by
[5, Theorem 16]:

τ(s) < (n − s) −
√

n(k − 1); (2)
that is, we can correct up to τ(s) errors when we apply erasures-
and-errors list-decoding to a received vector v with s symbols
erased. List-GMD decoding will perform a series of list-decodings
and attempt to correct up to τ(s) errors and fill in s erasures for
s ∈ [0, · · · , d − 1].

We use Example 1 in Koetter and Vardy’s paper [10] to
illustrate List-GMD decoding. The transmitted codeword is
{1, 2, 3, 4, 0} ∈ C5 (5, 2), an extended Reed-Solomon code over
GF (5). In this example, applying maximum likelihood (ML) de-
coding will lead to the transmitted codeword. The hard-decision
received vector is {4, 2, 3, 3, 3}, where the first, fourth, and fifth
symbols are incorrect. The corresponding reliability vector is
{0.90, 0.99, 0.61, 0.44, 0.40}. A codeword c that has dH (c, v) ≤
τ is τ -consistent.

Example 1: List-GMD decoding
• Decoding {4, 2, 3, 3, 3} using Sudan’s list-decoding algo-

rithm, we obtain a list of 2-consistent, τ (0) = 2, codewords
in the RS code: {3, 3, 3, 3, 3} and {4, 2, 0, 3, 1}.

• Decoding {4, 2, 3, 3, ?}, where ? indicates the erased posi-
tions, we obtain a list of 1-consistent, τ (1) = 1, codewords:
{4, 2, 0, 3, 1}.

• Decoding {4, 2, 3, ?, ?}, we obtain a list of 1-consistent,
τ (2) = 1, codewords: {1, 2, 3, 4, 0}, {4, 1, 3, 0, 2}, and
{4, 2, 0, 3, 1} .

• Decoding {4, 2, ?, ?, ?}, we obtain a list of 0-consistent,
τ (3) = 0, codewords: {4, 2, 0, 3, 1}.

List-GMD decoding {4, 2, 3, 3, 3} therefore gives us the follow-
ing codewords: {3, 3, 3, 3, 3}, {4, 2, 0, 3, 1}, {1, 2, 3, 4, 0}, and
{4, 1, 3, 0, 2}. In this case List-GMD was able to find the max-
imum likelihood codeword {1, 2, 3, 4, 0}, whereas classical and
GMD decoding cannot. Notice that we do not have to repeat the
list-decoding trials for every s ∈ [0, · · · , d − 1]. The output list

generated by decoding {4, 2, 3, ?, ?} contains the output list pro-
duced by decoding {4, 2, 3, 3, ?}. We can skip unnecessary List-
GMD trials by using the relations given in an errors-erasures table,
such as the one generated for the example, Table I. According to
Table I, the 1-erasure case and 2-erasures case can correct up to
τ = 1 error. The list of codewords generated by the 2-erasures
case will contain all codewords produced by the 1-erasure case,
because the two cases differ by an erasure which can always be
filled-in correctly. To run List-GMD on a received vector, we only
have to run the algorithm once for every value of τ (s). For the
cases where multiple s evaluate to the same τ (s), we only have to
list-decode the case with the largest τ (s) + s combination. More-
over, the errors-erasures table only depends on n, k, and s, so we
would only have to generate the table once for each code before
we begin List-GMD decoding.

TABLE I
ERRORS-ERASURES TABLE FOR THE (5, 2, 4) REED-SOLOMON CODE

s 0 1 2 3
τ (s) 2 1 1 0

C. The Koetter-Vardy algebraic soft-decision decoding
Koetter and Vardy [7], [10] developed a polynomial-time soft-

decision decoding algorithm based on Sudan’s list-decoding. Koet-
ter and Vardy’s approach uses polynomial interpolation with vari-
able multiplicities while Sudan’s technique uses polynomial inter-
polation with fixed multiplicities. For an (n, k, d) RS code de-
fined over GF (q), the Koetter-Vardy (K-V) algorithm generates
a size q × n multiplicity matrix M = {mi,j}, i = 1, · · · , q and
j = 1, · · · , n, from channel posterior probabilities for a maximum
possible q · n interpolation points. The allocation of multiplicities
in the q × n matrix M is done by a greedy algorithm [10, Algo-
rithm A]. Each entry in M can be a different non-negative integer.
Sudan’s list-decoding can be viewed as a special case of the K-
V algorithm with a multiplicity matrix M that consists of one and
only one nonzero entry in each column and each entry has the same
value. The K-V approach allows the more reliable entries in M to
receive higher multiplicity values and this yields the potential for
improved performance.

The complexity of the K-V algorithm depends on the cost of the
multiplicity matrix, defined by Koetter and Vardy [10] as

C (M) ,
1

2

q∑

i=1

n∑

j=1

mi,j (mi,j + 1) . (3)

Let C = C (M). The computation of the interpolating polyno-
mial QM (X, Y ) is equivalent to solving C linear equations. A
straightforward method of solving for QM (X, Y ) is Gaussian
Elimination, however, its complexity is on the order of O

(
C3

)
.

Nielsen [11] has proposed a reduced-complexity method of finding
QM (X, Y ) that is on the order of O

(
κC2

)
where κ is a constant.

The computational complexity of Koetter-Vardy’s algebraic soft-
decision decoding can therefore be high. Thus, we would like to
use a threshold condition to estimate its performance.

Koetter and Vardy provided a threshold condition for simulation
in their paper [10, Corollary 5]. Given a codeword c, define [c] as
a q × n matrix. Let each row index of [c] represent an element
ζi ∈ GF (q); then [c]i,j = 1 if cj = ζi and [c]i,j = 0 otherwise.
Define the score as



SM (c) = 〈M, [c]〉 =

q∑

i=1

n∑

j=1

mi,j · [c]i,j . (4)

Koetter and Vardy proved that QM (X, Y ) has a factor Y −f (X),
where f (X) evaluates to c ∈ Cq (n, k), if

SM (c) ≥
√

2 (k − 1) C. (5)
The threshold condition of (5) is not tight; that is, codewords that
do not satisfy (5) may still be in the K-V output list.

one symbol duration, l bits
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Fig. 1. A simple 2-state trellis to illustrate the indices used in the symbol-based
APP derivations. The input bit sequence ϕ

I
(bl−1, bl−2, · · · , b0) is marked by

the highlighted path.

III. A MODIFIED BCJR ALGORITHM FOR NON-BINARY
SYMBOLS

A. Description and derivation
Let ϕ ∈ GF (2l) be an information symbol. There are l bits

per symbol and we can map each symbol in GF (2l) to a distinct
bit pattern; that is, ϕ , (bl−1, bl−2, · · · , b0), where bi ∈ GF (2).
Let u , uk

k−(l−1) be the information symbol mapped to the input
bit sequence from time k − (l − 1) to time k. Figure 1 illustrates
the index labeling. The a posteriori probability that the informa-
tion symbol u equals ϕ conditioned on the length-N received bit
sequence RN

1 is:
Pr

(
u = ϕ | RN

1

)
=

p(u=ϕ,RN
1 )

p(RN
1 )

(6)

= 1

p(RN
1 )

∑
s

∑
s′ p

(
u = ϕ, sk = s, sk−l = s′, RN

1

)
(7)

The equivalence in (6) is obtained using Bayes’ rule and (7) is ob-
tained using the principle of total probability. By applying Bayes’
rule and the Markov property that events after time k only depend
on the current state sk and are independent of past observations,
we can rewrite the joint pdf in (7) as

p
(
u = ϕ, sk = s, sk−l = s′, RN

1

)
= p

(
RN

k+1 | sk = s
)

·p
(
u = ϕ, sk = s, Rk

k−(l−1) | sk−l = s′
)

·p
(
sk−l = s′, Rk−l

1

)
(8)

= βk(s) · γϕ

(k−(l−1),k)(s
′, s) · αk−l(s

′) (9)

The term βk(s) is called the backward state metric, the term
γϕ

(k−(l−1),k)(s
′, s) is called the branch transition probability, and

the term αk−1(s
′) is called the forward state metric.

We expand the branch transition probability, by using Bayes’
rule and the fact that the symbol a priori probability is state-
independent, as

γϕ

(k−(l−1),k) (s′, s) = Pr (u = ϕ)

·Pr (sk = s | u = ϕ, sk−l = s′)

·p
(
Rk

k−(l−1) | sk = s, u = ϕ, sk−l = s′
)

. (10)

If state s at time k is connected to state s′ at time k − l via the
input sequence u = ϕ, then Pr (sk = s | u = ϕ, sk−l = s′) =
1; otherwise Pr (sk = s | u = ϕ, sk−l = s′) = 0. The pdf

p
(
Rk

k−(l−1) | sk = s, u = ϕ, sk−l = s′
)

is a function of the chan-

nel characteristic; in a partial response channel with AWGN the pdf
can be calculated as:(

1√
2πσ

)l

e
− J l−1

i=0(Rk−i−ci)
2

2σ2 (11)

where σ2 is the noise variance and (cl−1, cl−2, · · · , c0) is the par-
tial response channel output sequence that corresponds to the in-
put sequence ϕ , (bl−1, bl−2, · · · , b0). The forward state metric
αk(s) and the backward state metric βs (s) can be updated as in
the original BCJR [8].

B. Simplification for ISI channels
There are simplifications that can be made for the case of binary-

input ISI channels in order to reduce complexity. The simplifica-
tions come from the fact that the states represent subsequences of
the input sequence. For a channel with memory ν, we can calculate
the joint pdf as:

p
(
u = ϕ, sk = s, sk−l = s′, RN

1

)

= p
(
u =

(
bl−(ν+1), · · · , b0

)
, sk = s, sk−(l−ν) = s′′, RN

1

)

= αk−(l−ν) (s′′) γ
(bl−(ν+1),··· ,b0)
(k−(l−(ν+1)),k) (s′′, s) βk (s) (12)

where s′′ is the state that corresponds to the shift register con-
figuration after an input of ν bits. Applying the simplification
would only require NISI = 2 + (l − ν) operations as opposed
to Ngeneral = (2 + l) 2ν + (2ν − 1) operations.

C. The Hybrid Viterbi-BCJR algorithm
If we are only interested in the most-likely l-bit symbol, we can

apply a variation of the symbol-based BCJR to further save on
complexity. The details of the algorithm are described below. It
is assumed that we have a trellis for an ISI channel with memory
ν; that is, there are 2ν states that are in one-to-one correspondence
with all 2ν possible binary strings of length ν.

1) The BCJR Phase : Run the BCJR algorithm storing the for-
ward metrics α at the time instances k − (l − ν) and the backward
metrics β at time instances k, where k = il, i = 0, 1, · · · , Ns and
Ns is the number of symbols to be detected.

2) The Viterbi Phase: Initialization: The backwards Viterbi
metrics at time k, µk, are initialized with the BCJR β’s at time k;
that is, µk (Si) = βk

i , i = 0, · · · , 2ν − 1. Propagation: For each
state s′ ∈ S at time j = k − 1, · · · , k − (l − ν): (a) Calculate the
accumulated branch metric for the two edges connecting state s′ at
time j to a state at time j + 1. Let the two states at time j + 1 that
connect to s′ be s0 and s1 corresponding respectively to the edges
with labels 0 and 1. The accumulated branch metrics are given by
µ̃b

j (s′) = γb
(j,j+1) (s′, sb) µj+1 (sb) , b = 0, 1. (b) Compare the

two accumulated branch metrics and select the largest. Let us say
that the selected branch has label b∗. (c) Update the state metric
and the survivor sequence q. In qj (s) we store the state at time
j + 1 corresponding to the sequence with largest metric starting at
time k (with metrics given by the β’s) and ending at state s at time
j. The update equations are µj (s′) = µ̃b∗

j+1 (s′) and qj (s′) = sb∗ .



3) Termination: For each state at time k−(l − ν), calculate the
overall state metrics, λ (Si), as λ (Si) = µk−(l−ν) (Si) αi. Find
the state s∗ with the largest overall metric. The most-likely l-bit
symbol, ϕ∗, made up of bits from positions k − l + 1 to k is given
by the ν bits corresponding to state s∗ followed by the l − ν bits
obtained by reading off the edge labels from the survivor sequence
qk−(l−ν) (s∗). The probability of the most-likely symbol is given
by Pr

(
ϕ∗ | RN

1

)
= λ (s∗) /p

(
RN

1

)
and p

(
RN

1

)
is obtained from

the forward portion of the BCJR algorithm [8].
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Fig. 2. Partial Response system model to compare various RS decoding tech-
niques.

IV. SIMULATION RESULTS

A. Performance of Reed-Solomon decoding techniques over a par-
tial response channel

We simulate the performances of Koetter-Vardy (K-V), List-
GMD, Sudan, GMD, and the classical bounded-distance Reed-
Solomon decoding algorithms on the so-called EPR4 partial re-
sponse channel with transfer function h (D) = (1 − D) (1 + D)

2.
Our system model is shown in Figure 2. It is a simple yet effective
model that allows us to compare the various RS decoding tech-
niques. The matrix Π∗ is what Koetter and Vardy referred to as the
generalized reliability matrix [10, Section 10] and applies to chan-
nels with memory. We first discuss the performance of Sudan’s
list-decoding. To evaluate the list-decoding performance, we can
run the actual algorithm or simulate the performance of a τ -error
correcting code by declaring a successful decode whenever the
Hamming distance of the transmitted codeword and the received
vector is less than or equal to τ . The simulation assumes that the
correct codeword is always selected from the list. Nielsen [11,
Ch. 3, Sec. 3] showed that the probability of a list with multiple
codewords becomes smaller as the code length n and alphabet size
q increase. For code parameters of practical interest in the mag-
netic recording setting, list-decoding will almost always produce
either a one-codeword list or a zero-codeword list. As an exam-
ple, for a (255, 232, 24) RS code Pr (|τ − consistent list| > 1) ≤
2.2649 × 10−7. Furthermore, the probability of choosing incor-
rectly from the list of candidates is also small. For these reasons,
the simulation results obtained through our assumption will closely
approximate the actual decoding performance. Figure 3 compares
the performance of GMD, List-GMD, K-V, classical and list de-
coding. The hybrid Viterbi-BCJR algorithm can be used in place
of the symbol-based BCJR algorithm to generate the reliabilities
of the most-likely symbols in the cases of GMD and List-GMD
decoding. We see that the soft-decision algorithms outperform the
classical hard-decision algorithm. List-decoding led to a 0.8 dB
gain over classical RS decoding. List-GMD provided about 1.25
dB gain over GMD because we apply sequential list-decoding in-
stead of sequential classical decoding. The performance of the
K-V algorithm is affected by the total number of interpolation
points used. In our simulation, we use a total of 10n interpola-
tion points, where n is the length of the RS code. With only 10n

points, K-V decoding already achieves the performance provided
by List-GMD. Koetter and Vardy have shown that 20n interpola-
tion points would provide near-asymptotic (large number of inter-
polation points) performance [12].
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Fig. 3. Comparison of GMD, List-GMD, Koetter-Vardy, classical, and list decod-
ing of a (7, 3, 5) RS code over GF � 23 � , 3 bits per symbol.
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BCJR for EPR4 channel in AWGN, 8 bits/symbol w/ (255,214,42) Reed Solomon Code
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Fig. 4. Threshold performance of List-GMD and Koetter-Vardy decoding of a
(255, 214, 42) RS code over GF � 28 � , 8 bits per symbol. To reduce simulation
time, the List-GMD performance is obtained using the lower-bound derived in [13]
and the Koetter-Vardy performance is obtained using the threshold condition given
in (5).

In Figure 4, we plot the threshold performance of K-V, List-
GMD, and classical decoding for a (255, 214, 42) RS code over
GF (256). The List-GMD curve is a calculated lower bound [13],
while the K-V curve is obtained using the threshold condition of
(5). The threshold K-V curve indicates a 0.5 dB gain and the List-
GMD lower bound indicates a 0.75 dB gain over classical RS de-
coding. In practice, the K-V decoding algorithm will outperform
the List-GMD decoding algorithm when a large number of inter-
polation points is used because the List-GMD algorithm is based
on list-decoding and, therefore, does not allow interpolation with
variable multiplicities as discussed in Section II-C.

B. Symbol-based BCJR versus bit-product BCJR
We compare the performance of a magnetic recording system

that uses the bit-product reliability measures to one that uses the
symbol-wise APPs to make hard-decisions on the information



symbols. The simulation platform is shown in Figure 5. We com-
pare the decisions (û) with the transmitted symbols (u) to calculate
the symbol error rate (SER) for each approach. We convert the de-
cisions (û) and the transmitted symbols (u) into bits and calculate
the bit error rate (BER) for each approach.

BCJR

bit based )
(symbol oru u

AWGN

to bits
symbol Hard

Decision
APPPR

Channel

Fig. 5. Simulation setup to compare the symbol-based BCJR to the bit-product
BCJR algorithm.

We plot the simulation result generated on the EPR4 channel
with 8 bits per symbol in Figure 6. It is interesting to consider the
effect that the trellis complexity and the symbol size have on the
performance difference between the symbol-based and bit-based
BCJR algorithms. If we let S be the number of states per stage and
l be the number of bits per symbol, then the number of valid paths
per symbol will be S, independent of l, and the total number of
possible paths (both valid and invalid) per symbol will be S l. We
therefore would expect the performance improvement in using the
symbol-based APPs to increase with increasing trellis complexity
S and increasing bits per symbol l [14].

Finally, we apply the reliability information generated by the
two approaches to the the K-V decoder. We again refer the readers
to [7], [10] for details. For the K-V decoder, we used the sim-
ple threshold condition discussed in Section II-C. The simulation
output generated by using a (255, 214) Reed-Solomon code on the
EPR4 channel is shown in Figure 7. Using reliabilities generated
by the symbol-based BCJR algorithm, we found a 0.25 dB SNR
gain at a SER of 10−3.

V. CONCLUSIONS

We have discussed soft-decision Reed-Solomon decoding algo-
rithms and their application in a magnetic recording channel. The
List-GMD and the Koetter-Vardy algorithms can utilize reliabil-
ity information provided by the channel. The soft-decision de-
coding algorithms outperform the classical hard-decision decod-
ing algorithm at the cost of added complexity. We can manage the
complexity in List-GMD by limiting the decoding radius τ and in
Koetter-Vardy by controlling the number of interpolation points.

We presented a symbol-based BCJR algorithm that calculates
the symbol-wise APPs for l-bit symbols. Our method is an exten-
sion of the original BCJR algorithm and uses the same bit-based
trellis. The symbol-based BCJR technique can be used to gener-
ate symbol-wise APPs to be used by soft-decision decoding algo-
rithms for algebraic block codes over GF

(
2l

)
. Simplification of

the symbol-based BCJR algorithm can be made when applying it
to a binary ISI channel. We also introduced the hybrid Viterbi-
BCJR algorithm which can be used when only the reliability of the
most-likely symbol is desired. Simulations over a partial response
channel show that symbol decisions made by using the symbol-
wise APPs yield a lower symbol error rate (SER) than the symbol
decisions made by using the bit-product reliability measures.
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Fig. 6. SER and BER for the EPR4 channel, 8 bits/symbol.
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